一覧に戻る

新シール概論(3)シールの理論

■発行日:2023年11月1日発行(2024年2月29日更新)

シールの理論

単純にゴムの塊を手で押さえると、押した力に比例してゴムは変形します。
かつゴムの内部では反発力が発生します。このことをOリングで説明します。
以下のように定義され、図1のようにOリングにつぶし代が発生します。

Oリングの太さ :d2 mm
溝深さ :H mm
Oリングのつぶし代=d2-H(mm)

図1 Oリングのつぶし


図2 Oリングの密封機構(1)


図3 Oリングの密封機構(2)

この圧力によりシール(密封)することができることになるのです。
したがって、つぶし代を増やす(溝深さ:Hを小さくする、またはOリングの太さ:d2を太くすることにより変えられる)ことや逆にすることにより減少できることも理解できると思います。
この接触圧力は、このつぶし代以外に使用するゴム材料の硬さを変えることにより変化させることもできます。
通常シールとしてはゴムの硬さは70が一般ですが、90にしますとこの接触圧力も大きくなります。
Oリングの場合、一般には硬さ70が使用されています。しかし、用途が固定用と限定されますと、硬さを90にすれば接触応力が大きくなり密封機能が良くなります。
また運動用では、密封機能と同時に抵抗力が大きくなると困る場合もあるので、硬さ70を使用します。
現在ゴム硬さの規格が変わり、従来使用されていたスプリング硬さは廃止され、タイプAデュロメータが使用されています。

シールの密封理論

Oリングには自封性という機能があります。
初期に与えたつぶし代による接触圧力がP’となります。(最大の値)(図1)
次に密封すべき圧力PがOリングにかかるとこの圧力により図2のように最大の接触圧力はP+P’となります。
密封圧力が導入されたことになります。
したがって、常に最大接触圧力は密封すべき圧力より高くなり密封できる仕組みです。このことを自封性といいます。
Oリングのつぶし代をOリングの太さで割った値がつぶし率といい。%で表現します。
JIS B 2401-2「Oリング(JIS B 2401-1)」用の溝寸法を決めていますが、このつぶし率はOリングの太さにより異なりますが(太さが小さい方が大きなつぶし率にしている)約8%から30%となっています。

表1 Oリングに用いるゴム
材料の種類 硬さ ※注1 材料の識別記号 用途
一般ニトリルゴム NBR 70 NBR-70-1 耐鉱物油用
90 NBR-90
燃料用ニトリルゴム NBR 70 NBR-70-2 耐ガソリン用
水素化ニトリルゴム HNBR 70 HNBR-70 耐鉱物油・耐熱用
90 HNBR-90
フッ素ゴム FKM 70 FKM-70 耐熱用
90 FKM-90
エチレンプロピレンゴム EPDM 70 EPDM-70 耐動植物・ブレーキ油用
90 EPDM-90
シリコーンゴム VMQ 70 VMQ-70 耐熱・耐寒用
アクリルゴム ACM 70 ACM-70 耐熱・耐鉱物油用

表1にOリングに用いる材料の種類と識別記号を示しています。
なお、注1)の硬さはタイプAデュロメータを示します。  
この表はJIS B 2401-1 Oリング第1部Oリングに関する規格ですが、寸法以外にもOリングの材料も規定しています。

ゴム材料について

現在シール用に使用されているゴム材料は一部を除いて大半は合成ゴムです。
石油から合成されたものです。 
ゴム状弾性体の総称としてエラストマー(Elastic Polymer)という言葉もあります。
このエラストマーは「主原料は高分子物質で、常温でゴム状弾性をもつ固体をいう」と定義されています。
エラストマーは外部からの力に敏感に応答する性質を有するので、シールのような面と面との“すきま”を密封する材料として誠に適切なものです。

ゴムという言葉に代わりエラストマーという言葉が使用されるようになった理由としては、ゴムに似ていながらゴムとは定義することができないような新しいゴム状弾性体が、最近多く出現したことからです。
ここでは、いわゆるゴムについてみますと、多くの配合剤(充填剤、老化防止剤、可塑剤、加硫剤など)を原料ポリマーに添加混合し、加硫工程を経て成形品にされたもので、分子構造的には分子内に架橋点(加硫によって分子同士が結合)を持ち、3次元の網目構造を持ち,材料の流動性を防止しているので、高温において加圧されても流動しない。
このことがいわゆるゴムが伸び、縮むなどの挙動することがこの加硫によることがお分かりでしょう。 

同じように合成されたプラスチックにはこのような加硫工程はありません。
プラスチックには熱可塑性と熱硬化性の分類と構造的に非晶性と結晶性に分けられますが、エラストマーのような3次元の網目構造はありません。
従って、プラスチックは通常、剛性が高くゴム状弾性をもちません。

前に述べたようにゴムには大半は合成ゴムと他に天然ゴムがあります。
主として使用されているのは、ほとんどが合成ゴムです。
ゴム材料には、多くの種類があります。

ニトリルゴム(NBR)

現在、シール用ゴムとして最も多く使用されている代表的なゴムです。
記号では、NBRになります。昔はブナNと言われていた時代もあります。
ブタジェン-(CH2-CH=CH-CH2)-とアクリロニトリル-(CH2-CHCN-)-との共重合体からなります。
一般にはニトリル量が18~48%のものが、多く使用されています。
JIS B 2401-1の規格で一般用と燃料用との違いは実はこのニトリル量の違いなのです。
すなわちこのニトリル量が多いのが燃料用となります。逆に少ない方が一般用です。
ただし、一般に言って、NBRと呼ばれるものは通常ではこの一般用のものと言ってもよいでしょう。 
しかし、誤解されがちなので、注意が必要です。
特性面から見ますと、油性はニトリル量が多い方が、良くなりますが、耐寒性は悪くなります。
また、構造中に不飽和結合(ブタジェンの化学式の-CH=CH-のところです)を含むため、耐候性は良くありません。
従って、屋外に暴露される場所には使用出来ません。製品の保管にも注意が必要になります。
しかしながら、加工性も良く機械的な強度も十分で、シール材として重要な圧縮ひずみ(後の章で詳しく説明します)、耐摩耗性などが優れていることがシール材として多く使用されている理由です。(また価格も安価であることもその理由です)

その他の欠点は耐熱性が幾分低い点です。この耐熱性には注意が必要です。
カタログでは、例えばNBRは100℃と表現されている場合があります。
この場合、その使用可能時間には触れていないことが問題です。
確かに100℃で使用可能ですが、Oリングのような用途では高温で使用しますと圧縮ひずみの発生が大きく、シールする能力が漸次落ちて来ます。
100℃では連続使用では、メーカの配合とか、用途などで差異はでますが、半年程度でシール出来なくなります。
従って、ゴムの場合では温度が上がれば上がるほど寿命が落ちるものと理解ください。
なお、温度が室温に戻ってもこの高温の影響はゴムに残ります。決して元に、戻りません。
しかし、低温の領域では、室温に戻れば低温の影響は消え去ります。ただし、低温で折れたり、割れたりしますと当然もとには戻りません。
なお、参考ですが、今後できる限りゴムの種類は略号を使用します。
JIS K 6397「原料ゴム及びラテックスの略号」の規格に規定されています。

水素化二トリルゴム(HNBR)

歴史的にも新しいゴムです。しかし上記のNBRをベースにして生まれたゴムです。
記号ではHNBRになります。NBRの欠点でした不飽和結合(2重結合個所)部分を水素化したものです。
(完全に水素化したのではなく、原材料によりますが、5%以下の2重結合は残っています)
NBRより機械的強度、耐熱性、耐候性に優れ、また耐油性はNBRと同等あるいはそれ以上耐えることからシール材料としては非常に有用なゴムです。
欠点は価格が高く、製造性が少し難しいことです。耐熱性として120℃程度まで(NBRは80℃程度として)使用可能なので、応用範囲も現在広がりつつあります。
従来NBRが使用できない温度範囲でふっ素ゴム(FKM)を使用していた一部はHNBRに変更可能になりえます。
しかし、注意すべき事項は、NBRと同様にアクリルニトリル量の影響は同じ点です。   
使用にはその当たりを明確にしてください。現在、このHNBRが多く使用されている分野は、自動車用機器、空気圧用機器、建機用途の油圧機器などがあります。

ふっ素ゴム(FKM)

ふっ素ゴムの組成もいろいろあります。一般には次のものが多く使用されています。
a)ふっ化ビニリデンー六ふっ化プロピレンの共重合体
b) ふっ化ビニリデンー六ふっ化プロピレンー四ふっ化エチレンの三元重合体
ふっ化ビニリデン
(-CF2-CH2-) x
六ふっ化プロピレン 四ふっ化エチレン
(-CF-CF2-)y     (-CF2-CF2-)z
|
CF3   

         

上記の構造式を見ますと、基本は炭素(C)とふっ素(F)と水素(H)からなっていることがお分かりでしょう。
ふっ素ゴム優れた性質は実は、この炭素(C)とふっ素(F)の結合力が大きいことが起因しています。(特に耐熱性、耐薬品性、耐油性などに対する抵抗性がこの原子の結合の力なのです。)
使用温度範囲は-20℃~+200℃。(ただし、耐寒性が悪いことに注意)
耐薬品性や耐油性は極めて優秀です。(しかし、一部例えば、有機酸、ケトン、メチルアルコール、エステル、アミン系などには使用できません)
高温、高真空においても分解がなく、ガス透過性も低いので、高真空関係のシールとして最も優れています。
なお、FKMの欠点を上げれば、価格がNBRと比較すると非常に高い、また製品の寸法許容差が通常のNBRの許容差の約1.2倍以上になります(NBRに対して二次加硫が必要であるためです)。
しかしながらその優れた特性により、現在なくてはならない重要な材料です。           
なお、良く知られた製造メーカの名称で呼ばれることが多いけれども、実際に使用されているとは言えない場合があります。
例えば、DuPont社のバイトンがFKMの中でも有名ですが、出来る限り一般の略号のFKMで呼んでください。

シリコーンゴム(VMQ)

主鎖にSi-Oの無機化合物から構成され、側鎖にメチル基(MQ)、ビニル基(MVQ)フェニール基(MPQ)のついたものがあります。
いずれにしても種種のシリコーンゴムがあることになります。しかし、市場に出ているシリコーンゴムでは区別はできませんし、
あまり公表されてはいないと見てください。
しかしながら共通な点は、一般に耐熱性と耐寒性が非常に優れている点です。
特に耐寒性では、ゴムの中で最も低温まで使用できるゴムです。(-60℃)
耐熱性は上記で説明しましたFKMとほぼ同レベルです。しかしながら長所のあるものには欠点はつき物です。
他のゴムと比較して機械的な強度が弱く運動の用途には不向きです。
このあたりに注意ください。またガス透過が他のゴムと比較しても約200倍大きいため真空の用途では問題がでますので利用しないほうがよいと思います。
高圧ガスを使用する場合に使用中に高圧ガスがゴムの内部に滞留してガス放置後、一種のブリスターという破壊現象を起こすことを避けるのにVMQが使用されることもあります。
また他のゴムと区別しやすい点があります。他のゴムはほとんど黒色(実は補強剤としてカーボンブラックを使用するからです)ですが、
シリコーンゴムはその補強剤としてはシリカを使用する関係上、一般には茶色、レンガ色など(顔料の色)が多いようです。

クロロプレンゴム(CR)

ネオプレンとして非常に有名で歴史的にも使用実績のながいゴムです。
なお、ネオプレンはデュポン社の商品名です。蛇足ですが、よくふっ素ゴムをバイトンと呼び社内規格に入れたり、図面上に記載している例が多く見られます。これもネオプレンと同じです。今後はぜひ正式な名称にしてください。(他の例では、テフロン、ナイロンなどがあります。いずれにしても商品名が有名になりすぎたためですが)
クロロプレン(CR)は名前のとおり塩素を側鎖に持ったゴムです。機械的強度も強くかつ、耐侯性も優れ、一般には、屋外での使用されるゴムとして使用されています。産業用では、冷凍機用途(アンモニアなど)や、重電機用の絶縁ガスとしてSF6を使用した遮断機に利用されています。
ただし、現在のJISのOリング規格には、規定されておりませんので、一応準拠したものとして取り扱われています。寸法、公差もNBR並みで取引されています。

エチレン・プロピレンゴム(EPDM)

このエチレン・プロピレンゴムにはエチレンとプロピレンの共重合体(EPM)とさらに少量の第三成分を含む三元重合体(EPDM)があります。
最近では、このEPDMが一般的に多く使用されています。比較的新しいゴムで、特殊な用途で非常に有用なゴムです。しかし用途を間違えると大きなトラブルになるので、注意が必要な少し厄介なゴムです。使用温度は-55~+150℃と広範囲です。
まず問題点ですが、一般工業用鉱物油には全く使用できません。この点を除くと多くの長所を持っています。
耐動植物油用(ブレーキ液)に使用できます。従って、自動車用途では非常に重要なゴムです。 
また、耐水性、耐蒸気性に優れていることから家庭用の給水・給湯器にはなくてはならないものです。
耐放射線に強く、原子力機器には欠かせない重要な役割を果たすゴムでもあります。
またFKMほどではないですが、耐薬品性に優れているなど、鉱物油には使用できない短所もありますが、有効なゴムと言えます。
例えば、水蒸気に対しては、FKMもより寿命が長い例もあります。
ただし、高温の空気に対しては、FKMより、耐性は良くありません。
従って、高温の空気を遮断できる用途や蒸気と蒸気との間のシールでは十分真価が発揮できます。

ウレタンゴム(AU,EU)

組成的には非常に多くのものがありますが、大別して主鎖がエステル結合とエーテル結合のものがあります。
ウレタンゴムの特徴は機械的強度、耐摩耗性が格段によいこと、硬さの高い割りに弾性がよいこと、NBR程度の耐油性を持っていることです。
耐熱性、耐寒性は中程度であるが、圧縮永久歪はあまりよくありません。ウレタンゴムの大きな欠陥は水、酸、アルカリに非常に弱く温度が高いと容易に分解するので、注意が必要です。
シールとしては、油圧用のパッキンとして多く使用されています。
ただし、記載しましたように油圧用パッキンでは主役を果たしていますが、その他ではシールで(例えばOリングとしては)は殆ど使用されていません。

アクリルゴム(ACM)

主としてアクリル酸エステルを主体にした重合体です。耐油性、耐熱用、耐候性は良好で、主に自動車のトランスミッション系統とのシールとして使用されています。

ブチルゴム(IIR)

イソブチレンとイソプレンの共重合体であるブチルゴムは適度の機械的強度を有し、耐熱、耐寒、耐候性も優れたゴムです。
鉱物系の油に対しては抵抗性がありませんが、特殊な不燃性のリン酸エステル系には良好な耐性を示し、EPDMが出現するまで、高温まで耐え得る唯一のゴムとして、シール材料として特異な位置を有していました。
しかし、圧縮永久歪が悪いためシール材料としてあまり重要でなくなる傾向です。ガスの透過性が極めて低く、電気特性が良いのでタイヤのチューブ、ゴム袋、絶縁材料として現在も多く使用されています。

天然ゴム(NR)、イソプレンゴム(IR)

イソプレンの重合体である天然ゴムは機械的強度が大きく弾性の優れたゴムですが、耐熱性、圧縮永久歪、耐油性が悪くシール材料としてはあまり使われてはいません。

スチレン・ブタジエンゴム(SBR)

 

スチレンとブタジエンの共重合体であるSBRは、もともと天然ゴムの代用として作られたもので特性もさほど変わりません。耐熱性は天然ゴムより幾分よいのですが鉱物油に対して悪いです。しかし、植物油には良好でシール材料として自動車のブレーキ液系統に多く使用されています。この分野ではEPDMが出現するまでは主役を演じていました。

クロロスルフォン化ポリエチレンゴム(CSM)

組成はポリエチレンの一部をクロロスルフォン化してポリエチレンの結晶を無くしゴム状にしたものです。
耐候性、耐薬品性、耐熱性は比較的よく耐油性も中程度ですが、シール材料としては圧縮永久歪が悪いため一般として使用されていません。

エピクロルヒドリンゴム(CO,ECO)

エピクロルヒドリンゴムはエピクロルヒドリン単独のホモポリマー(CO)とヒドリンとエチレンオキサイドの共重合体(ECO)の2種類があります。
耐油性はいずれもよく鉱物油、ジエステル系の作動油にはNBRと同等あるいはそれ以上に言えます。圧縮永久歪も比較的よく耐候性申し分ありません。耐熱性はNBRよりやや良い程度です。耐寒性は、ホモポリマーはあまりよくありませんが、共重合体は相当優れていて低温性と耐燃料性は同時に要求される場合には有望です。加工性、機械的強度、耐水性、耐金属腐食性はやや悪いがシール材料として一般的には使用頻度は多くはありません。

ポリブタジエンゴム(BR)

組成はブタジエンの重合体で、弾性、低温性は非常に優れています。
耐油性は天然ゴムなどと同様に悪いので、シール材料としてはあまり使われていません。その他、ゴム材料は多くありますが、シール用材料の観点見ればほとんど使用されないので、除きました。

(続く)

お問い合わせフォーム

 

個人情報保護方針